
Not 3/14/66

EN 6 6 ACCESSO ON HEB 5 6	(THRU)
(PAGES) (PAGES) (NASA CR OR TMX OR AD NUMBER)	(CATEGORY)

Nove

GENERAL DYNAMICS

Convair Division

	GPO PRICE \$
	CFSTI PRICE(S) \$
A2136-1 (REV. 5-65)	<i>h</i> • • • • • • • • • • • • • • • • • • •
	Hard copy (HC)
	Microfiche (MF)

ff 653 July 65

DETECTION OF CRACKS ADJACENT TO SPOTWELDS BY RADIOGRAPHY IN THIN STAINLESS STEEL SHEET

MRG - 289

January 29, 1962

under NASA support.

Prepared by: C. J. Kropp &

L. D. Girton

GENERAL DYNAMICS/CONVAIR

29 January 1962

RECEIVED

SUBJECT:

Detection of Cracks Adjacent to Spotwelds by Radiography in CENTAUR PROJECT OFFICE NASA
Thin Stainless Steel Sheet

ABSTRACT:

Radiographs were made of two multispot circumferential joint specimens that had been cyclically loaded until cracks formed, ranging in depth from 2 to 100% of the sheet thickness. In a radiograph made using an x-ray tube with a standard glass window, cracks could be detected that were greater in depth than 23% of the sheet thickness (.013"). Using an x-ray tube with a beryllium window, cracks could be detected that were greater in depth than 15% of the sheet thickness (.010"). For thin sheet stainless steel it was recommended that a beryllium windowed x-ray tube be used because the radiographs could be read with greater facility and cracks of shorter depth could be detected.

auther

Prepared by

C. J. Kroop

1 D. Dirton

Approved by

Research Group Engineer Materials Research Group

CJK: LDG: AH: in

Distribution:

V. A. Babits 592-0 K. J. Bossart 100-0 R. S. Shorey 597-3 W. Norris 541-3 G.D. Davis 510-00 F.C. Rosacker 541-50 C. Bokemp 141-40 TO:

Distribution

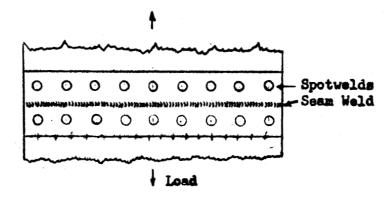
FROM:

Materials Research Group, Dept. 592-1

SUBJECT:

Detection of Cracks Adjacent to Spotwelds by Radiography in

Thin Stainless Steel Sheet


INTRODUCTION & PURPOSE:

During fabrication and subsequent testing of missile tanks made from thin stainless steel sheet cracks sometimes develop, particularly around the spotwelds in the weld joints. It is the purpose of this investigation to evaluate the ability of radiographic inspection to detect these cracks.

PROCEDURE AND RESULTS:

Material and Specimen Description

The two specimens used for radiographic evaluation were standard resistance spot and seamwelded joints that had been cyclically loaded at -423°F until cracks of various depths developed around the spotwelds. Details of the material and stress history are given below:

	Specimen #1	Specimen #2
Material Ty	pe 301 ½H (MIL-S-5059)	Type 301 XH (0-71004)
Thickness	.010	.013
Heat No.	E87124	57104
Coil No.	****	453
Fatigue Stress, K	SI 0-110	0-140
No. of Cycles	210	40
Test Temperature,	•F −423	-423

Dve Penetrant and Visual Examination

The spotwelds of both specimens were examined visually, at magnifications from 3X to 30 X, and by dye penetrant inspection. Dye penetrant revealed two cracks that came through to the surface in Specimen 1 and one through crack in Specimen 2. By visual examiation alone it was difficult to distinguish between an actual crack and the severe plastic deformation adjacent to a spotweld produced by the loads applied to the specimen.

Radiographic Examination

Both specimens were radiographed at Astronautics using production x-ray equipment. An x-ray tube with a beryllium window was used to radiograph Specimen 1 while a more commonly used tube with a glass window was used to radiograph Specimen 2. Beryllium, element number 4 in the periodic table, allows more radiation to pass through than the other heavier window materials, it also traps undesirable secondary electrons emitted from the target. Radiographs varying in density from 0.9 - 2.3 were made using the Be window, a density of 2.0 appeared to be the best. All radiographs were read by one experienced radiographer, those made with the Be window were sharper and easier to read. Cracks in the radiographs of these specimens appeared as black lines or areas curving around the perimeter of the spotweld nugget on the side away from the seamweld, see Figure 1. The radiographs indicated the presence of eight cracks in Specimen 1 (301 gH) and eleven cracks in Specimen 2. These results, identifying each spotweld with its radiographic indication, are tabulated in Tables II and III respectively.

Metallographic Examination

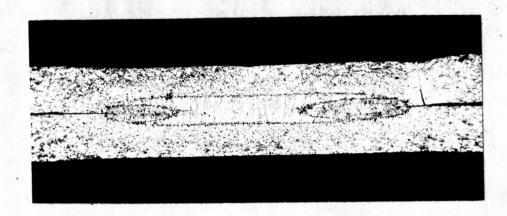
All spotwelds were identified, see Figure 1, sectioned through the center paralled to the direction of load and prepared metallographically for examination. All specimens were examined in both the as-polished and etched condition. Etching was found to darken the cracks but did not extend their depth appreciably. Crack depth and nugget dimension measurements were made in the etched condition. All cracks initiated in the heataffected-sone adjacent to the nugget and propagated from the faying surface to the outer surface. Crack depths, measured with a micrometer eyepiece, and calculated percent penetrations for Specimen 1 are given in Table I: percent penetrations for each crack in Specimen 2 are tabulated in Table III. Typical examples of these cracks were photographed at 100X and 500X and are shown in Figures 2 through 13. Of the sixteen spotwelds in Specimen 1 (301 $\frac{1}{2}$ H), 3 showed no evidence of cracks, 11 were partially cracked and 2 were through cracks. In the spotwelds of Specimen 2 (301 IV). 8 showed no evidence of cracks, 7 were partially cracked and one was a through crack.

It was noted that most of the cracks were confined to spotwelds on one side of the seamweld. To determine if this may have been caused by a difference in nugget diameter or penetration, all welds were carefully measured. There was no appreciable difference. The nugget diameters were on the law side of MPS 43.01B requirements but met all the penetration requirements. The actual values for Specimen 1 are given in Table I.

DISCUSSION

The cracks indicated by radiography are compared with actual cracks, revealed by sectioning and microscopic examination, in Tables II and III for Specimens 1 and 2 respectively. The radiograph of Specimen 1, made using a beryllium window, detected all cracks greater in depth than 15% of the sheet thickness. There were no false indications. The indications in the radiograph of Specimen 2 (Table III), made using the standard glass window, were not as straight forward. Two cracks with depths of 23% of the aheet thickness were not detected, while one crack only 5% of sheet thickness in depth was detected. In addition there were 5 false indications. No explanation can be given at this time for these false indications.

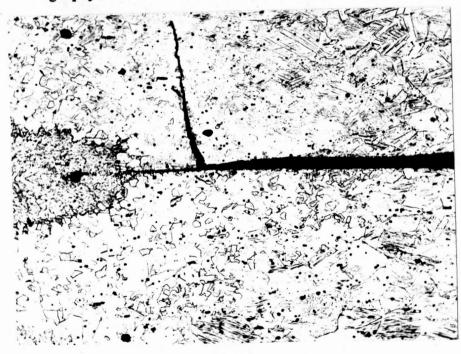
CONCLUSIONS & RECOMMENDATIONS:


On the basis of the deta obtained from the evaluation of two spotwelded circumferential joints in type 301 stainless steel, it is concluded cracks can be detected by radiography in thin (.010"-.013") stainless steel sheet that are greater in depth than:

- (1) 15% of the sheet thickness, using a x-ray tube with a Be window
- (2) 23% of the sheet thickness, using a x-ray tube with a glass window

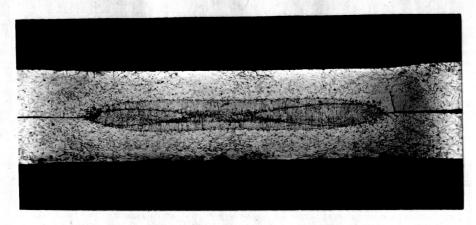
For thin sheet stainless steel it is recommended that radiographs be made using a x-ray tube with a beryllium window because they can be read with greater facility and cracks of shorter depth can be detected.

	RF	PORT NO.	29 Janu	ary 1962
O		•		
0		97		configuration B87124. This s being ob-
		п		Enlargement (approx. 2.4X) of the radiograph of the weld joint configuration of the fatigue specimen fabricated from 301 half hard, Ht. No. E87124. This print was made so that it appears as if the setual radiograph is being observed (black is black and white is white). The cracks can be seen as black
0		Spot Weld Numbers	•	the radiograph of sted from 301 hal are as if the act to 15 white). The
0		ສ		prox. 2.4X) of t specimen fabrica so that it appears black and whit
0		*		Enlargement (approf of the fatigue siprint was made screened (black is
0		15		FIGURE 1 - B
		91		


Spot Weld Numbers

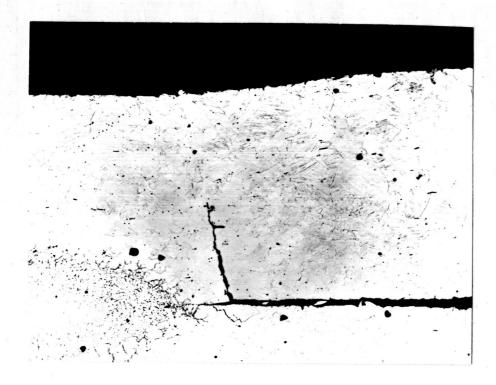
Magnification: 50x

Etchant: Electrolytic oxalic acid


FIGURE 2 - Cross- sectional view thru the cemterline of spot weld No. 2 (see Fig. 1). Note the secondary weld nugget which is the result of extended welding time when a pulsating current resistance spot weld machine is used. The fatigue load was applied to the top sheet and directed to the right. This crack was detected by radiography.

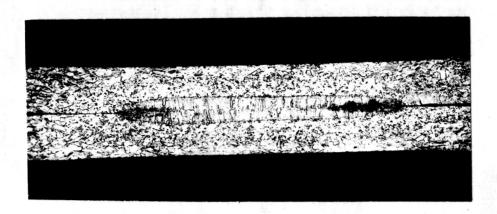
Magnification: 250x

Etchant: Same as above


FIGURE 3 - Same spot weld as above except at a higher magnification to show the fatigue crack in greater detail. The crack length is 0.006% or 65% thru the sheet thickness.

Magnification: 50x

Etchant: Electrolytic oxalic acid


FIGURE 4 - Cross-sectional view thru the centerline of spot weld No. 4 (see Figure 1). The load was applied to the top sheet and directed to the right. Radiographic inspection detected a slight indication of a crack.

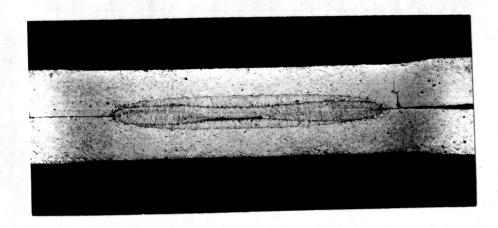
Magnification: 250x

Etchant: Same as above

FIGURE 5 - Same spot weld as shown in Fig. 4 except at a higher magnification to show the fatigue crack in greater detail. The crack length is 0.004" or 46% of the sheet thickness.

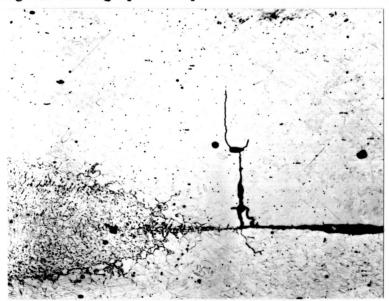
Magnification: 50x

Etchant: Electrolytic oxalic acid


FIGURE 6 - Cross-sectional view thru the centerline of spot weld No. 5 (see Fig. 1). The load was applied to the top sheet and directed to the right. The four fine cracks are not readily visible in this photomicrograph (see Fig. 7). Radiographic inspection detected a slight indication of a crack.

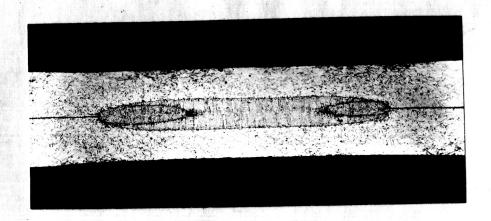
Magnification: 250x

Etchant: Same as above


FIGURE 7 - Same spot weld as shown in Figure 5 except at a higher magnification so that the four fine cracks are made visible. The shortest crack is 0.0005" while the longest crack is 0.0015" (respectively 5% and 16% thru the sheet thickness.

Magnification: 50x

Etchant: Electrolytic oxalic acid


FIGURE 8 - Cross-sectional view thru the centerline of spot weld No. 6 (see Fig. 1). The load was applied to the top sheet and directed to the right. Radiographic inspection detected a crack.

Magnification: 250x

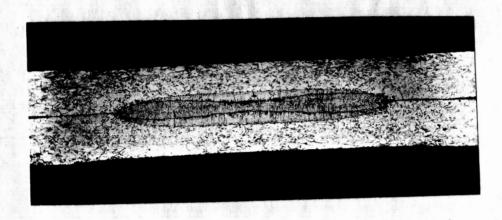
Etchant: Electrolytic oxalic acid

FIGURE 9 - Same spot weld as shown in Fig. 8 except at a higher magnification. The crack length is 0.0056 or 61% of the sheet thickness. Note that as the crack propagated thru the load sheet, it branched into two parts at an inclusion. Note also that a fine crack is present in the unloaded sheet. This fine crack appears to be a continuation of the major crack in the loaded sheet.

Magnification: 50x

Etchant: Electrolytic oxalic acid

FIGURE 10: Cross-sectional view thru the centerline of spot weld No. 9
(see Fig. 1). The load was applied to the top sheet and directed to the right. No crack is present. Radiographic inspection did not detect a crack.



Magnification: 250x

Etchant: Same as above

FIGURE: 11 - Same spot weld as show in Fig. 10 except the area where the fatigue cracks would occur is shown at a higher magnification.

Load was applied to the top sheet and directed to the right.

Magnification: 50x

Etchant: Electrolytic oxalic acid

FIGURE 12 - Cross-sectional view thru the centerline of spot weld No. 12 (see Fig. 1). The load was applied to the top sheet and directed to the right. Radiographic inspection did not detect a crack.

Magnification: 250x

Etchant: Same as above

FIGURE 13:- Same spot weld as shown in Fig. 12 except at a higher magnification so that the fatigue crack is made visible. The crack length is 0.0014" or 15% of the sheet thickness.

• Spectne	
Patigu	.010.
nation of Spot Welds from the	S-5059, Ht. No. E87124, Oa. C
its of the Metallographic Exami	Fabricated from 301 Half Herd, Mil-S-5059, Ht. No. E87124, Ga. 0.010"
ABLE I Res)

0.060 0.062 0.062 0.062 0.062 0.063	0.060 0.062 0.062 0.062 0.062 0.062 0.062 0.063	1	मुख्य ं	Mil-S-5059, Ht. No. E67124, UR	Ga. 0.010" Denth of Klen	&Penetration
0.066 0.062 0.062 0.065	23 0.000 23 0.000 23 0.000 24 0.000 25 - 90 26 - 90 27 0.000 28 0.000 29 0.000 20 - 90 20 - 90	Spot Weld No. (See Fig. 1)	weld nugget Da., in.	TOTO BEARING DEAL		o Sheet
0.062 0.062 0.062 0.062 0.062 0.063	38 0.000 39 0.0001 20 0.0036 20 0.0036 2	gree	090-0	33	0.00	001
0.060 0.062 0.065	23 23 24 25 26 26 26 27 26 27 26 27 26 27 26 27 27 28 29 20 20 20 20 20 20 20 20 20 20	7	0,062	***		&
0.059 0.059 0.059 0.059 0.057 0.056 0.056 0.056 0.056 0.055 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056	20 - 90 20 - 90 20 - 90 20 - 90 20 - 90 20 - 90 20 - 90 20 - 90 20 - 90	m	0,060	-33	3 9	, ,
0.059 0.057 0.062 0.062 0.063 0.064 0.065	23 0.000 24 0.000 25 0.000 26 0.000 27 0.000 28 0.000 20 0.0000 20 0.000 20 0.0000 20 0.000 20 0.0000 20 0.000 20	~	0,062			4
0.057 0.062 0.062 0.063 0.062 0.064 0.065 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059	20 - 90 20 - 90 20 - 90 20 - 90 20 - 90	ν.	0.059	8	0.005 (2)	ر کا
0.062 0.056 0.056 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.0002 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059	20 - 90 20 - 00 33	4	0.057	9	38	. 4
0.056 0.056 0.056 0.055 0.055 0.055 0.0014 0.055 0.0002 0.055 0.0002 0.0002 0.0002	33 No Creek 33 No Creek 31 No Creek 32 No Creek 32 No Creek 32 No Creek 32 No Creek 33 No Creek 34 No Creek 35 No Creek 36 No Creek 37 No Creek	o 6-	290.0	8	0.003	3
0.062 0.060 0.059 0.059 0.056 0.055 0.055 0.002 0.062 0.062 0.062 0.062 0.062 0.062 0.062 0.062 0.062 0.062 0.062	33 No Greek 31 No Greek 32 0.0014 34 0.0022 41 0.0022 39 0.0022 41 0.0022 39 0.0022	• ₩	0.058	**	0.00¢	4
0.060 0.059 0.059 0.056 0.056 0.056 0.055 0.0014 0.055 0.0002 0.0002 0.060 0.060	28 < 0.0001 Approx 31 No Greek 32 0.0014 34 0.002 38 0.0002 41 0.0005 39 0.0002 20 - 90	o	90.0	33 33	No Cyneck	0
0.059 0.056 0.056 0.055 34 0.0014 0.055 0.062 38 0.0002 0.059 0.060 39 Mo Grack	31 No Greek 32 0.0014 34 0.00014 38 0.0002 41 0.0002 39 Xo Creek	10	090.0	8		x. 1.0
0.056 0.055 0.055 0.062 0.062 0.002 0.060 0.060 0.060 0.060	20 - 90 20 - 90 20 - 90	ដ	0.059	33	No Creak	0 ;
0.055 0.062 0.062 0.009 0.059 0.060 39 No Grands	20 - 90	ង	0.056	84 3	0.0014	15 15
0.062 0.009 0.059 0.060 80 Grands	20 – 90	13	0.055	**	, com	J. 0
0.059	41 39 No 20 – 90	オ	0.062	\$	0.000 (2)	5 v
98 090°0	39 86 20 – 90	7.	, 650.0	7	0.0002	· 01
	20 -	24	0900	%	No Crack	0
		1				
- 00		MPS 43.01 B requi	rements 0.060 - 0.080			

Through orack Two creaks (S)

TABLE II

Spot Weld No.

	충	MRG-289	
Metallographic Examination	Crack present - thru entire load sheet Crack present - thru 65% of load sheet Crack present - thru entire load sheet Crack present - thru 46% of load sheet Cracks present - longest crack 16%, shortest crack 5% all thru load sheet	Crack present - thru 61% of load sheet Crack present - thru 60% of load sheet Crack present - thru 4% of load sheet No Crack Crack present - thru approx. 10% of load sheet No Crack present - thru 15% of load sheet Crack present - thru 15% of load sheet Crack present - thru 15% of load sheet Cracks present - thru 15% of load sheet Cracks present - longest crack 5%, shortest crack 2% all through load sheet	Crack present - thru 2% thru load sheet No Crack
Radiographic Examination	Crack present Crack present Crack present Slight indication of a crack Slight indication of a crack	Crack present Crack present Crack present No Crack	No Crack No Crack
(See Fig. 1)	11 51 50 71 FO	9 6 8 3 6 4 8 3 6	15 16

∞	ដ		0	•	37
Total number of cracks found by radiography	Total number of cracks found by metallography	Total number of cracks as found by rediography,	but not confirmed by metallography	Total number of cracks as found by metallography,	but not detected by radiography

Beryllium window attachment used for the radiographic inspection Cracks depths ranged from 1 to 15% of load sheet thickness. ابرج

Results of Radiographic and Metallographic Examination of Spot Welds in	the Fatigue Specimen Fabricated from 301 extra hard, 0-71004, Ht. No. 57104,	Cl. No. 453, Gm. 0.013"
TABLE III R	C	O

Metallographic Examination	No Crack Crack present - thru 50% of load strut Crack present - thru entire load sheet	No Crack No Crack No Crack No Crack No Crack	Crack present - thru approx. 90% of load sheet	No Crack Crack present - thru 50% of load sheet a Crack present - thru 75% of load sheet a Crack present - thru 23% of load sheet No Crack present - thru 23% of load sheet No Crack present - thru approx. 5% of load sheet	29 January 1962
Radiographic Examination	e	Slight indication of a crack Slight indication of a crack No Crack No Crack Crack	Crack present	Slight indication of a grack Slight indication of a crack Crack present No Crack No Crack No Crack Crack	Total number of cracks found by radiography Total number of cracks found by metallography Sotal number of cracks as found by radiography Total number of cracks as found by metallography Total number of cracks as found by metallography, Lotal number of cracks as found by metallography, 22
Spot Weld No.	ተለጥ	4v2r8	6	17 17 17 18 19 19	Total numk Total numk Total numk but not oc Total numk

Standard production radiographic equipment used for the inspection. Crack lengths were both 23% of the load sheet thickness.